

Making Energy Efficiency Work For You

Optimising Building Performance

Presented by Dr Paul Bannister

22/05/2012

测 E X E R G Y

Overview

- Or where does the energy go?
- → HVAC technologies
- Lighting technologies
- Office equipment
- Other technologies
- Conclusions

Where does the Energy Go?

HVAC Technologies

- → HVAC consists of
 - Ochillers
 - ⊖ Cooling towers
 - Boilers
 - ⊖ Cogen/trigen
 - → Fans and Pumps
 - Package units
 - HVAC control system
 - Or And some other bits and pieces

Chiller Hardware

- Optimum chiller technologies

 - → 700-1000kW mag bearing VSD centrif, small VSD screw
 - 1000-2000kW VSD screw, VSD mag bearing centrif
- Savings up to 50% relative to 10-15 year old technologies
- Economics: long payback, coordinate with routine replacement if possible.
- Onte: R22/R123 (HCFCs) are becoming obsolete

测 E X E R G Y

Chiller Operation

- On't run when they aren't needed
 - Outdoor temperature lockout
- Operate at higher chilled water temperatures
- Operate at lower condenser water temperatures
- Stage up and down at the right time

🛜 E X E R G Y

Cooling Towers

→ Hardware:

- Replace old tired cooling towers
- Use induced draft towers not forced draft towers
- Variable speed fans
- - Spread load out across multiple towers
 - Optimise temperature set-point in conjunction with chillers

Boilers

- → Hardware:
 - Replace tired old boilers
 - Eliminate steam boilers as far as possible
 - Upgrade burners to fully modulating burners
 - Use condensing boilers
- Operation
 - Tune the burner regularly
 - Turn off as much as possible
 - Reduce operating temperature when loads permit

Cogen/trigen

Hardware:

- O Not a magic bullet, and very expensive
- Output Can you actually use the waste heat?
- ⊖ Operation
 - Consider third party operation and management
 - Maximise run hours during peak electricity cost periods to get return
 - On't create false loads to justify thermal use
 - ONOT a substitute for efficiency

测 E X E R G Y

Fans

- → Hardware:
 - Replace stuffed bearings and sagging V-belts
 - Use VSD control not guide vane
- Operation
 - Set up controls to minimise operating speed and pressure to meet load
 - Turn off when not needed

Pumps

- → Hardware:
 - Replace stuffed bearings
 - Use VSD control not throttling valves
- Operation
 - Set up controls to minimise operating speed and pressure to meet load
 - → Turn off when not needed
 →

Water Cooled Package Units

- → Hardware:
 - Replace dying units
 - Install condenser water shut-off valves
- Operation
 - Turn off when not needed
 - Widen dead bands

 - → Filter cleaning

Air Cooled Package Units

- → Hardware:
 - Replace with inverter units
- ⊖ Operation
 - Turn off when not needed
 - Widen dead bands
 - ⊖ Refrigerant charge
 - ⊖ Filter cleaning

HVAC Controls

- → Hardware:
 - Replace pneumatic systems
- Operation
 - ⊖ See operational measures
 - Widen dead bands
 - ⊖ Commission!
 - Time-of-use control

Other HVAC Bits and Pieces

- Outside air control
 - Optimise economy cycle
 - ⊖ Minimise unnecessary outside air
- ⊖ Air Filters
 - ⊖ Clean regularly
 - Use high energy efficiency filters (Eurovent standard)

测 E X E R G Y

Lighting Technologies

- ⊖ Halogen downlights
 - Replace with LED (with care!)
- Metal Halide
 - Consider LED replacements if control possible
- - ⊖ Aim for <9W/m² in office space
 - T5 or T8 with electronic ballast
 - Grid spacing and design important
- Lighting is a DESIGN issue

Lighting Control

→ Time of use control is paramount

- Manual switches rarely effective
- Time-clocks tend to longer hours than necessary
- ⊖ Use occupancy sensors
 ⊖ Manual on, auto-off
 - ⊖Zone size <250m²
- ⊖ Dimming
 - Good theory but often unsuccessful
 - → Keep focussed on the time of use control!

Office Equipment - Computers

- Time of use control is paramount
 - Working week is less than a third of the hours in a week
 - → Turn off!!
- Use low-power PCs (laptops and some desktops; thin client)
- Our of the output of the o

Office Equipment - General

- → Time of use control is paramount
 - Use power management settings
- → Avoid excess equipment
 - Use central print stations, MFDs
- → Kitchen equipment
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 - O Use 3+star fridges, etc

Office Equipment – Server Rooms

- Don't over-condition
 - → ASHRAE air-on recommendations:
 - ⊖ 18-28°C, <60% RH, 5.5°C<dewpoint<15°C
- → Make sure air goes through not around the racks
 - "Hot aisle/cold aisle" approach
- ⊖ Virtualise/modernise servers
- → Remove old, underutilised servers

Other Equipment – Lifts

- ⊖ Upgrade technology
 - Massive cost
 - → Benefit can be >40%
- Tune operating parameters to match realoccupancy
- Don't over condition the lift motor room
- Upgrade the lights in the lift cars
- Turn off some lifts overnight (remarkably difficult)

Other Equipment – Domestic Hot Water

- Convert electric to gas or heat pump
- → Reduce tap flows
- → Turn off circulation pump out of hours
 →

Conclusions

- Over the example of the example
- In each case measures may be
 - → Hardware longer paybacks
 - Operational − shorter paybacks
- → Remember:
 - Most buildings have many operational savings available
 - Improved efficiency frequently means better service

Making Energy Efficiency Work For You

Questions?

Presented by

Dr Paul Bannister paul@xgl.com.au 02 6257 7066

22/05/2012