

Making Energy Efficiency Work For You

How to Retrofit your Building From Benchmarking to Commissioning

Presented by

Dr Paul Bannister

22/05/2012

Overview

- Why retrofit?
- Benchmarking
- Identifying energy efficiency opportunities
- Making it happen

Why Retrofit?

- Reasons for retrofitting buildings vary, but key factors include:
 - Services upgrade
 - NABERS upgrade to attract tenants
 - Reposition asset for improved rent/sale value

Why Retrofit?

- Services upgrades
 - Replacement of old plant
 - Improvement of service delivery
 - Reduced maintenance costs
 - Improved reliability

Why Retrofit?

- NABERS & asset repositioning
 - PCA grade matrix references NABERS
 - Government tenants demand 4.5 star rating
 - Some large corporate tenants, too
 - CBD lighting may generate similar drivers
 - Building with 4.5 stars may attract higher rents
 - Building with quality tenants has higher sale value

Why Not Knock Down and Rebuild?

- Rebuild has many disadvantages
 - High capital costs
 - High environmental impacts
 - Loss of rent during construction period
 - Final result may not be that much better

When to Retrofit?

- Retrofit timing has to be coordinated carefully:
 - Vacancies (especially for deeper refurbishments)
 - Known replacement horizons for plant
 - Seasonal plant outage coordination
 - Beware central plant lead times

Benchmarking – How Good is my Building?

- Use available benchmarks to determine the level of efficiency opportunity in your building:
 - Offices: Anything less than NABERS 4 stars is fair game
 - Hotels/shopping centres: Anything less than NABERS
 3.5 stars is fair game
- ∋ But.....
 - Almost every building has 10-15% savings available
 - Benchmarking tells you how much worse it is than that

Benchmarking – How BAD is my building?

- With low-hanging fruit measures

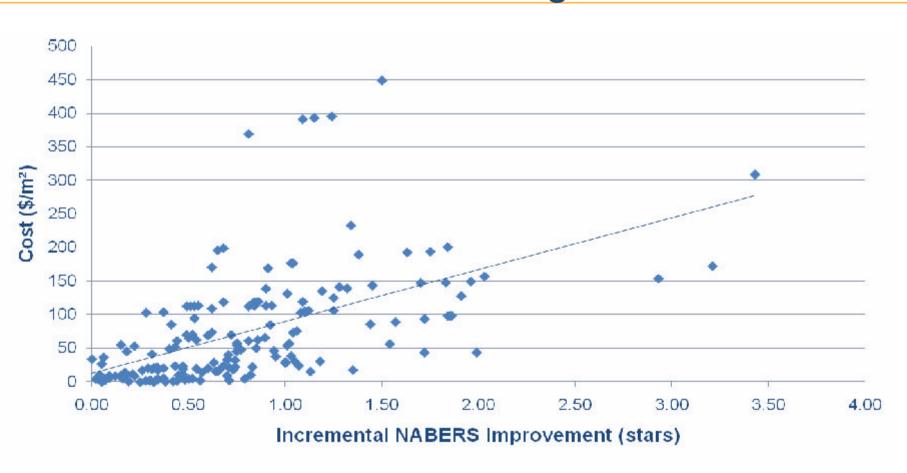
 - 0-1 star buildings have savings in excess of 30% available
- With some capital investment

 - 0-1 star buildings have savings in 50%+ available
- Almost everywhere, gas savings are available
 - Gas is typically wasted more than electricity

Identifying Energy Savings

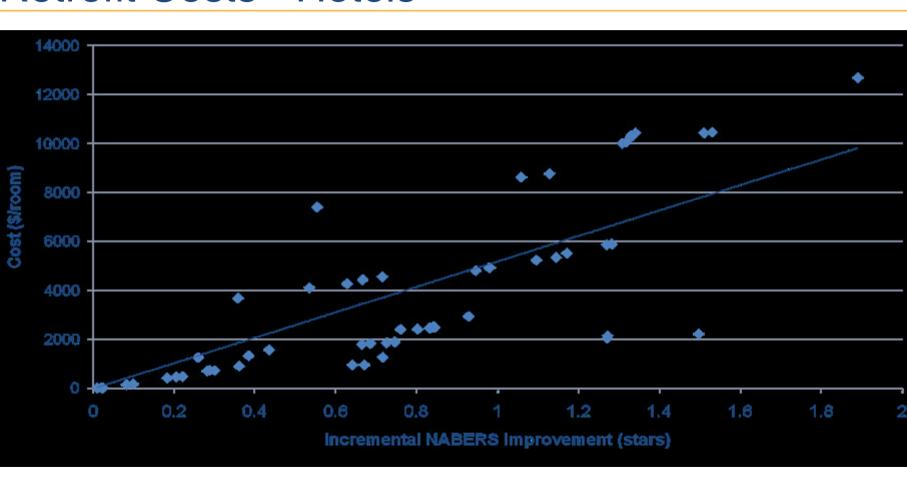
- Standard process is an energy audit, which should include as a minimum:
 - List of specific energy savings measures with costs and benefits
 - An energy end-use breakdown
 - A description of the site
- Notional standard is AS3598 Level 2

Good and Bad Audits


- Audits cost anywhere between 3% and 20% of annual energy cost depending on site size and complexity
 - You get what you pay for.
- Bad audit call-signs:
 - No end use breakdown
 - How did the auditor estimate energy use?
 - Non-specific measures
 - "Do something with your HVAC controls"
 - → "Replace all the T8 lamps with T5 replacements"

Alternatives to Audits

- Work internally to identify waste
 - Results dependent upon skills and motivation of building staff
- Limited domain audits can deliver results
 - e.g. lighting only, HVAC only
- HVAC controls reviews can be very cost-effective
- Be wary of supplier driven equipment upgrades
 - Solutions offered will be equipment driven
 - Plenty of bad examples and far fewer good examples



Retrofit Costs - Office Buildings

Retrofit Costs - Hotels

Areas of Opportunity

- Lighting
 - Turn off when not needed
 - Reduce lighting power density/install more complex controls
- HVAC
 - Improve controls
 - Upgrade plant
- Other equipment
 - Turn off when not in use
 - Rationalise

Don't Forget Building Management

- LEHR demonstrated that performance improvement is not just about technology. Key factors include:
 - Management responsibility and authority
 - Having a reason to care:
 - Staff vs contractors
 - Incentives and disincentives
 - NABERS declaration
 - Training
 - Culture of continuous improvement

Key Issues in the Implementation Process

- Implementation process must manage:
 - Preservation of design intent
 - Translation of design intent into design
 - Translation of design into a working outcome
 - Minimisation of tenant disruption
 - Demonstration of outcome
 - Time and costs

Key Players in the Implementation Process

- Key players
 - Energy auditor
 - Services engineer
 - Ontractor(s)
 - Building owner
 - Building management
 - Project manager
 - Tenants
- One party may take several roles

Procurement and Contracting Options

- Design and construct
 - Hand audit to contractor
 - Contractor designs and implements solutions
- Detailed design, build to plan
 - Hand audit to design consultant
 - Design works and tender
 - Contractor implements, consultant checks
- Energy Performance Contract
 - EPC contractor identifies and implements solutions
 - EPC contractor guarantees outcome

Common Failures

- Not all efficiency upgrades are successful
 - Specification issues
 - Control/commissioning issues
 - Lack of monitoring and verification
 - Project management

Specification Issues

- Audits don't always give much detail
 - A good audit should, though
 - Energy efficiency is often about detail
- Normal practice delivers the designs that fail and need upgrade
 - Delivery of successful retrofits requires specific attention to energy efficiency
- Preservation of design intent is important

Controls/Commissioning Issues

- Simple questions (not always easy answers)
 - Does it work the way it was intended?
 - Has it been optimised for efficiency?
 - What commissioning tests has it been subject to?
 - Has it been correctly documented (or at all)?
- Onsider the use of an Independent Commissioning Agent

Monitoring and Verification

- Establish a pre-works baseline
 - NABERS easiest where available
- Develop monitoring for each measure, preferably
 - Simple before/after measures for simple systems
 - Climate corrected correlation based benchmarks for HVAC
- Build metering into the works to enhance understanding
- Confirm performance as part of the defects process

Project Management

- All procurement methods need a good project manager to
 - Integrate proposed design with design intent
 - Manage implementation issues in line with design intent
 - Manage multiple conflicting priorities
 - Manage monitoring and verification process

Conclusions

- Retrofitting is an attractive option for the repositioning of an asset
- The basic process is:
 - Measure
 - Identify savings
 - Implement savings
 - Measure
- Procurement and execution of retrofits require care

Making Energy Efficiency Work For You

Questions?

Presented by

Dr Paul Bannister paul@xgl.com.au 02 6257 7066

22/05/2012