Seminar 2 Delivering Positive Outcomes

Steven Beletich

• Steven Beletich

- Phase out of incandescent lamps (Australia, China, Middle East)
- NSW ESS architect (+VEET)
- CBD tenancy lighting methodology

• etc.

Homework Solution
 from Last Session

- Write your answers on a piece of paper now
- Bring them to the front

Learning Objectives of this Session

• By the end of this session, you should:

- Have a basic understanding of the objectives of lighting design
- Have an understanding of the economics of lighting efficiency upgrades
- Understand what constitutes an effective business case
- Be engaged !!
- Be empowered !!

Recap of session 1
Overview of lighting design
Case study
Building a successful business case
A few words about LED lighting
Context = primarily office space

Recap of Session 1

Lamp Types (Ranked by Efficiency)

Best

Worst

- Fluorescent (electronic T8/T5)Very good LED
 - Fluorescent (magnetic T8, CFL)
 - 12V halogen IRC
 - 12V Halogen
- 240V Halogen
- 240V Incandescent

Ballast Technology

Magnetic

- Typically have starter
- Lights typically flicker on startup
- Ballast losses ~8W per lamp
- Electronic
 - No starter
 - No flicker fast ramp up
 - Losses ~1W per lamp
 - Will actually drive the lamp to produce ~10% more light

Lighting Power Density

Lighting power density =

- Total luminaire power ÷ floor area
- Best practice is <7 Watts/m² (office)
- Any lower may cause light levels to suffer
- Does not take into account control systems (i.e. operating hours)

Solution to Interactive Exercise from Last Session

Assume floor area of 1500 square metres, fitted with:

- 275 fluorescent luminaries (twin 36W lamp and magnetic ballast)
- 50 halogen downlights (50W lamp and magnetic transformer)

1. Existing Lighting			
Total floor area (m ²)	G14	Given	1,500
a) Fluorescent Luminaires			
Number of fluorescent luminaires	G16	Given	275
Lamp power per lamp (Watts)	G17	Given	36
Number of lamps per luminaire	G18	Given	2
Ballast technology	G19	Given	Magnetic
Ballast losses (Watts)	G20	Magnetic=8, Electronic=1	8
Total power per luminaire (Watts)	G21	(G17+G20) * G18	88
Total power fluorescent luminiares (Watts)	G22	G21*G16	24,200
b) Halogen Downlights			
Number of halogen downlights	G25	Given	50
Lamp power per lamp (Watts)	G26	Given	50
Number of lamps per luminaire	G27	Given	1
Transformer technology	G28	Given	Magnetic
Transformer losses (Watts)	G29	Magnetic=12, Electronic=3	12
Total power per luminaire (Watts)	G30	(G26+G29) * G27	62
Total power for all halogen luminiares (Watts)	G31	G30*G25	3,100
Total lighting power for this space (Watts)	G33	G22 + G31	27,300
Energy cost p.a.	G34	G10*G11*G33/1000	\$18,018
Lighting power density for this space (Watts/m ²)	G35	G33/G14	18.2

Solution to Homework from Last Session

Nabers rating calculator results

Premise type	Office				
Premise scope	Tenancy				
Building details	Homework, Solution	n,			
State and postcode	MELBOURNE 3000)	Hours of occupancy	58	hrs/week
Area of office	1500	m ²	Number of computers	105	

Energy Star rating (Calculator version number: 10.0)

Average performance

Your office has average greenhouse performance. There is scope for significant improvement, and positive changes will have a noticeable impact on your performance.

Results for the 12 months rating period	Nabers energy r	ating	Nabers energy i GreenPower	rating without
Star rating	2.5 stars		2.5 stars	
GreenPower included	0	%	0	%
Energy intensity	436	MJ/m ²	436	MJ/m ²
Total greenhouse gas emissions (Full fuel cycle - scope 1 & 2)	220099	kg CO ₂ -e p.a.	220099	kg CO ₂ -e p.a.
Total greenhouse gas emissions (Full fuel cycle - scope 1,2 & 3)	245565	kg CO ₂ -e p.a.	245565	kg CO ₂ -e p.a.
Greenhouse gas intensity (Scope 1 & 2)	147	kg CO ₂ -e/m ² p.a	147	kg CO ₂ -e/m þ.a
Greenhouse gas intensity (Full fuel cycle - scope 1,2 & 3)	164	kg CO ₂ -e/m²p.a	164	kg CO ₂ -e/m ² p.a
Benchmarking factor (previously known as Normalised Emissions)	119		119	

Your energy data source input

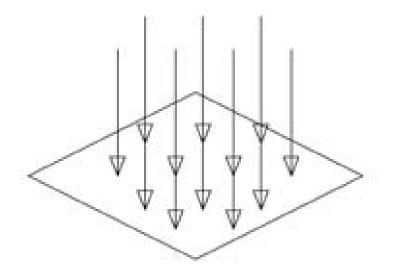
Fuel type	Quantity	Unit	Emissions (Full fuel cycled - Scope	1,2 & 3)	GreenPower		
Electricity	181900.0	kWh	245565	kg CO ₂ e p.a.	0	%	

• • What is Lighting Design?

• Lighting is not rocket sience

- But is more difficult than some might think
- Much subjectivity
- Objectives of Lighting Design
 - Safety
 - Productivity
 - User enjoyment
 - Energy efficiency
 - Longevity

Lighting Design Standards


• Lighting should meet AS/NZS 1680

- Av maintained lux
- Uniformity of lux
- Cut-off angle for luminaires (glare)
- Lamp colour temperature
- Lamp colour rendering
- Glare index

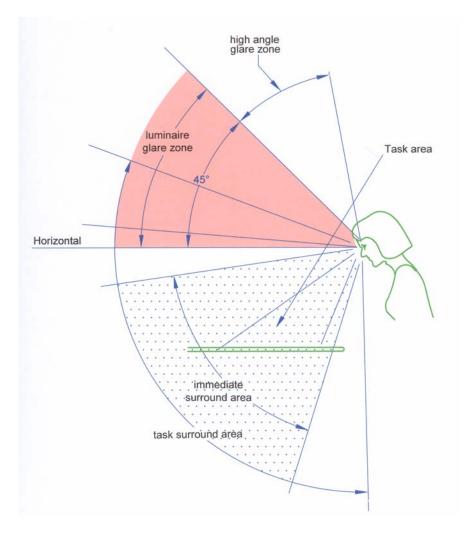
• • Lux

Lux = units of "illuminance"
total light output ÷ floor area
Units = lumens/m² or "Lux"

• • Average Maintained Lux

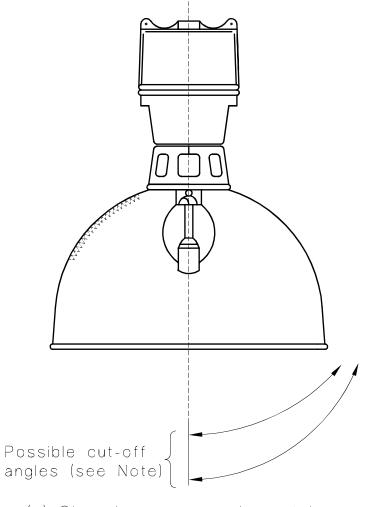
• Lighting designer must compensate for "lumen depreciation" of lights

- Lamp depreciation
- Accumulation of dust & dirt
- Build in a "maintenance factor" to account for this loss of light
 - Typically around 80%
 - (well maintained fluorescent)
 - Therefore must over-design by 25%


Uniformity of Lux

• The ratio of the minimum lux to the average lux

- Light levels should be relatively uniform throughout the space
- However work surfaces may be "task lit"



Cut Off Angle for Luminaires

(a) Clear lamp, exposed arc tube

Lamp Colour Temperaure

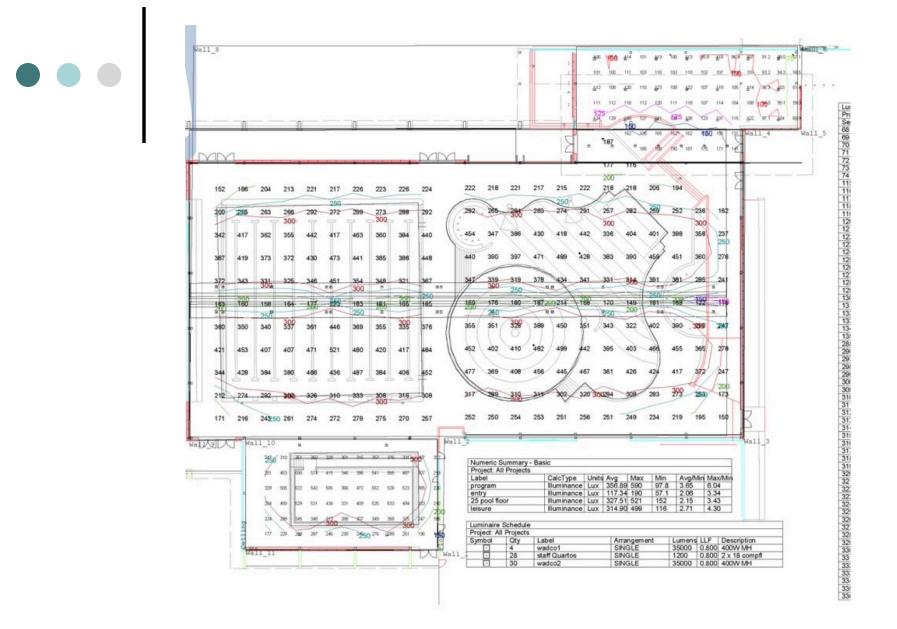
• Warm white = 2700-3000K

- Good for homes in cool climates
- Cool white = 4000K
 - Good for offices
- Daylight = 5000+K
 - Bluish light

Lamp Colour Rendering

• Colour Rendering Index

- How well light can "render" colours
- Scale of 1-100
- Want CRI of at least 80 for homes and offices


Lighting Design Software

Room type		- N	Naterial				
Office sample				Ti Ti	Material	rho	1
			Floor				
Dimensions [m]		-			1 diffus	20	
			Ceiling			100.00	
	T				2 diffus	70	
	1		Wall		0.1107	50	
	2	-	W1 W2		3 diffus 3 diffus	50 50	
Y			W3		3 diffus	50	
1	ļΤ.	- 1	W4		3 diffus	50	
	7		114		Junua	JU	
Dimensions [m]	5						
Height	2.8	•					
Reference plane		_					
Height of the reference plane	0.7	= [[Materials / textures.		Sam	e material	
Offset to the wall	0.5	÷ FF	loom name				
		1	North angle (0°)	1	10	cation	

Name Color Material diffus 20.0% plastic e diffus 70.0% plastic e diffus 50.0% plastic e diffus 20.0% plastic e diffus 50.0% plastic e diffus 20.0% plastic e diffus 20.0% plastic e diffus 30.0% plastic e diffus 60.0% plastic e diffus 20.0% plastic e diffus 20.0% plastic e diffus 20.0% plastic e diffus 20.0% plastic e diffus 30.0% plastic e diffus 30.0% plastic e diffus 30.0% plastic e diffus 0.000 Roughness 0.000 e diffus 20.0% plastic 0.000 e diffus 13.4% plastic 0.000 e diffus 40.2% plastic 0.000 e diffus 40.2% plastic 0.000
• diffus 70.0% plastic • diffus 50.0% plastic • diffus 20.0% plastic • diffus 20.0% plastic • diffus 30.0% plastic • diffus 60.0% plastic • diffus 30.0% plastic • diffus 0.000 Image: Security • diffus 0.00% plastic • diffus 0.00% plastic • diffus 0.00% plastic • diffus 13.4% plastic
 diffus duptatic <liduptatic< li=""> <liduptatic< li=""> duptati</liduptatic<></liduptatic<>
 diffus <lidifus< li=""> difus <lid< td=""></lid<></lidifus<>
• diffus 30.0% plastic 0.210 • diffus 60.0% plastic 0.254 • diffus 60.0% plastic 0.254 • diffus 60.0% plastic 0.254 • diffus 20.0% plastic 0.200 • diffus 30.0% plastic 0.200 • diffus 30.0% plastic 0.000 • diffus 30.0% plastic Surfacefinish • Edelstahl 80.0% metfunc Specularity 0.000 • Birke 80.9% plastic 0.000 0.000 • diffus 0.0% plastic 0.000 0.000 • diffus 0.0% plastic 0.000 0.000 • diffus 13.4% plastic 0.000 0.000
• diffus 60.0% plastic 0.20* • diffus 60.0% plastic Total reflectivity (Rho) : 0.20* • diffus 20.0% plastic Total reflectivity (Rho) : 20.0% Select col • diffus 30.0% plastic Surfacefinish Surfacefinish • Edelstahl 80.9% plastic Specularity 0.000 • Birke 80.9% plastic Roughness 0.000 • diffus 2.0% plastic Plastic • diffus 13.4% plastic Notestic
= diffus 20.0% plastic Total reflectivity (Rho): 20.0% Select col = diffus 30.0% plastic Surfacefinish = Edelstahl 80.0% metfunc Specularity 0.000 = Birke 80.9% plastic Roughness 0.000 = diffus 0.00% plastic Roughness 0.000 = diffus 13.4% plastic Surfacefinish
a diffus 20.0% plastic a diffus 30.0% plastic b diffus 30.0% plastic b Edelstahl 80.0% metfunc b Birke 80.9% plastic a diffus 0.0% plastic b Birke 80.9% plastic a diffus 0.0% plastic b Birke 80.9% plastic a diffus 0.0% plastic b diffus 2.0% plastic a diffus 13.4% plastic
Edelstahl 80.0% metfunc Specularity 0.000 Birke 80.9% plastic Roughness 0.000 diffus 2.0% plastic 0.000 diffus 2.0% plastic 0.000 diffus 13.4% plastic
Birke 80.9% plastic 0.000 diffus 0.012 plastic Roughness diffus 2.0% plastic diffus 13.4% plastic
Birke 80.9% plastic diffus 0.0% plastic diffus 2.0% plastic diffus 13.4% plastic
a diffus 2.0% a diffus 2.0% plastic a diffus 13.4%
= diffus 13.4% plastic
= diffus 40.2% plastic

SSOciates

ral			
ation a	algorithm used		Average indirect fraction
t of eva	aluation surface		0.70 m
			2.30 m
			0.80
umino	us flux of all lamps		34400 lm
power			418.4 W
power	per <mark>area (</mark> 50.00 m²)		8.37 W/m ² (2.27 W/m ² /100lx)
nance	e		
qe illur	ninance	Eav	369 lx
		Emin	300 lx
num ill	uminance	Emax	448 lx
mity g	1	Emin/Em	1:1.23 (0.81)
		Emin/Emax	1:1.49 (0.67)
No.\	Make		
	Thorn		
8	Order No.	: 96 202 394	
	Luminaire name	: DIFFUSALUX	II G 1X49W HF PS OP [STD]
	Equipment	: 1 x T16 49 W	/ 4300 lm
	ation a of eva of lun enance umino oower oower nance ge illur um illu nity g nity g	ation algorithm used of evaluation surface of luminaire plane enance factor uminous flux of all lamps oower oower per area (50.00 m²) nance ge illuminance um illuminance num illuminance mity g1 mity g2 No.\Make Thorn 8 Order No. Luminaire name	ation algorithm used of evaluation surface of luminaire plane enance factor uminous flux of all lamps oower oower per area (50.00 m²) nance ge illuminance um illuminance mity g1 mity g2 Emin/Em mity g2 No.\Make Thorn 8 Order No. : 96 202 394 Luminaire name : DIFFUSALUX

Examples of Software Types

• Various free software packages

- Relux
- Dialux
- OptiWin
- Radiance
- Sophisticated packages
 - AGI32
 - Elum Tools
 - Optis
 - Visual 2.6

• Use an accredited lighting designer
• E.g. member of IESANZ
• Reputable equipment suppliers

• Floor area 1500 m²

- Existing lighting
- o 275 fluorescent luminaries
 - Twin 36W lamp + magnetic ballast
- 50 halogen downlights
 - 50W lamp and magnetic transformer

••• Existing Lighting (cont)

Data	Cell Ref	Formula	Answer
Energy cost per kWh	G10	Given	\$0.22
Lighting hours per annum	G11	Given	3,000
1. Existing Lighting			
Total floor area (m²)	G14	Given	1,500
a) Fluorescent Luminaires			
Number of fluorescent luminaires	G16	Given	275
Lamp power per lamp (Watts)	G17	Given	36
Number of lamps per luminaire	G18	Given	2
Ballast technology	G19	Given	Magnetic
Ballast losses (Watts)	G20	Magnetic=8, Electronic=1	8
Total power per luminaire (Watts)	G21	(G17+G20) * G18	88
Total power fluorescent luminiares (Watts)	G22	G21*G16	24,200
b) Halogen Downlights			
Number of halogen downlights	G25	Given	50
Lamp power per lamp (Watts)	G26	Given	50
Number of lamps per luminaire	G27	Given	1
Transformer technology	G28	Given	Magnetic
Transformer losses (Watts)	G29	Magnetic=12, Electronic=3	12
Total power per luminaire (Watts)	G30	(G26+G29) * G27	62
Total power for all halogen luminiares (Watts)	G31	G30*G25	3,100
Total lighting power for this space (Watts)	G33	G22 + G31	27,300
Energy cost p.a.	G34	G10*G11*G33/1000	\$18,018
Lighting power density for this space (Watts/m ²)	G35	G33/G14	18.2
	000	000,01	

50	
50	
1	

12	
62	
3,100	

• Upgrade fluorescent luminaires to

- High performance luminaire
- Single 28W T5 lamp
- T5 electronic ballast
- 29 Watts total luminaire power
- Suitable for majority of offices
- 88W **→** 29W
- Upgrade halogen downlights to LED
 - 62W **→** 9W

New Lighting (cont)

2. New Lighting

a) Upgrade fluorescent luminaires to high performance, single 28W lamp, T5 electronic

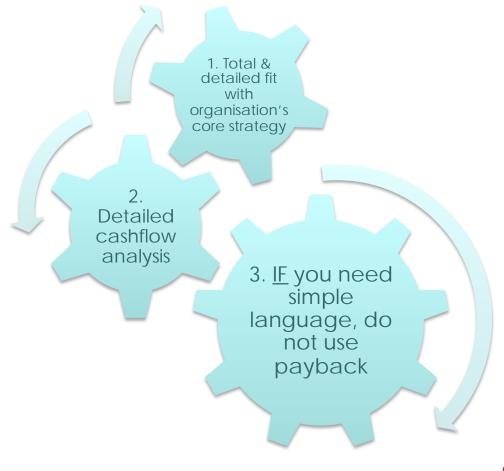
New lighting power density for this space (Watts/m ²)	G46	G44/G14	5.6
Energy cost p.a.	G45	G10*G11*G33/1000	\$5,561
New total lighting power for this space (Watts)	G44	G40+G43	8,425
Total power for all luminaires of this type (Watts)	G43	G42*G25	450
Total power per luminaire (Watts)	G42	Given	9
b) Upgrade halogen downlights to 9W LED			
Total power for all luminaires of this type (Watts)	G40	G39*G16	7,975
Total power per luminaire (Watts)	G39	Given	29

3. Simple Business Case

Total cost to install each new fluorescent luminaire	G49	Given	\$125
Total cost to install each new downlight	G50	Given	\$40
Total Capex	G51	G49*G16+G50*G25	\$36,375
Energy Savings p.a.	G52	G34-G45	\$12,458
Simple Payback (years)	G53	G51/G52	2.9

4. Business Case with VEECs

Simple Payback (years)		
Capex net of VEET savings		
VEET net value (total)		
VEECs generated (10 years)		
VEEC net value (per MWh certificate)		
Energy cost escalation p.a. (nominal)		


G55	Given	0.0%
G56	Given	\$20
	(G33-G44)*G11*10/1000000	566
G58	G57*G56	\$11,325
G59	G51-G58	\$25,050
G60	G59/G52	2.0

3 Steps to a Turn Business Case into a Bankable Project

I. Business Case = Detailed Fit with Organisation's Core Strategy

Beletich Associates energy consultants

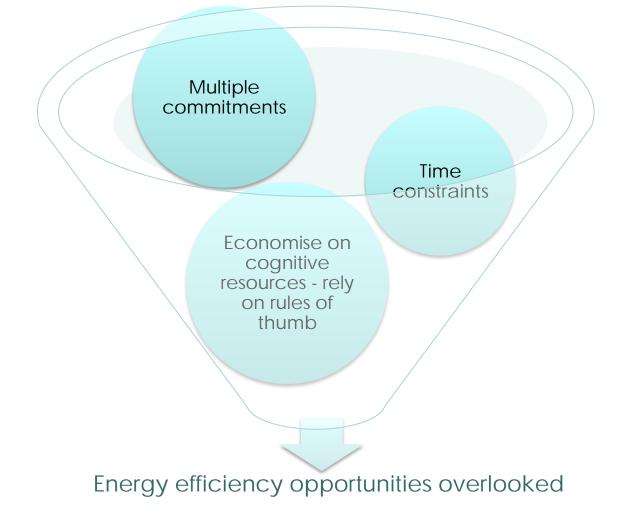
Source: The Business Case and Beyond, eex.gov.au (DRET), January 2012

Detailed Cashflow Analysis

Inputs											
Project duration			10								
Discount rate			5.0%								
Energy price escalation	p.a.		0.0%								
CapEx			-\$36,375								
Annual energy savings	(without escal	ation)	\$12,458								
Outputs (Nominal)											
Simple Payback (no ene	ergy price esca	alation)	2.9								
		,									
Return on investment			2.4								
"Times Money"			3.4								
Outputs (Discounted)											
IRR			32%								
NPV			\$60,000								
Benefit : cost ratio			164%								
Year	0	1	2	3	4	5	6	7	8	9	10
Nominal Values											
CapEx	-\$36,375										
Energy savings		\$12,458	\$12,458	\$12,458	\$12,458	\$12,458	\$12,458	\$12,458	\$12,458	\$12,458	\$12,458
Net cashlow	-\$36,375	\$12,458	\$12,458	\$12,458	\$12,458	\$12,458	\$12,458	\$12,458	\$12,458	\$12,458	\$12,458
Cumulative cashflow	-\$36,375	-\$23,918	-\$11,460	\$998	\$13,455	\$25,913	\$38,370	\$50,828	\$63,285	\$75,743	\$88,200
Disccounted Values											
Net cashlow	-\$36,375	\$11,864	\$11,299	\$10,761	\$10,249	\$9,761	\$9,296	\$8,853	\$8,432	\$8,030	\$7,648

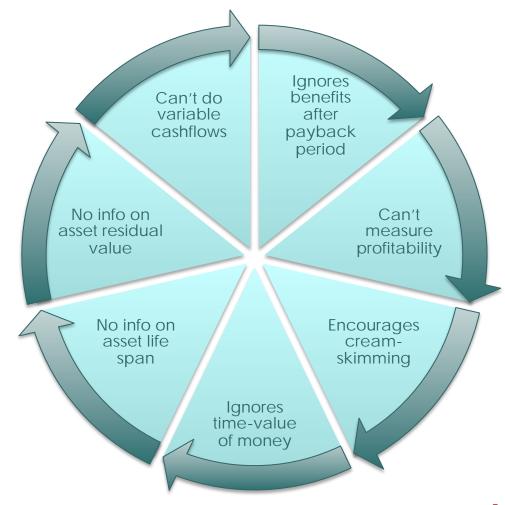
• • 3. <u>IF</u> You Need Simple Language

- e.g. for non-financial person
- Do not use payback
- Use either
 - IRR = "Interest Rate"
 - Comes from cashflow analysis
 - "Times Money"
 - How many times do you get your money back?


Why do We Use Payback?

• Very commonly used

- Simple to calculate:
 - CapEx ÷ annual benefit
 - Energy efficiency industry is technical, not financial
 - Appeals to other non-financial persons, e.g. engineers & building managers


Theory of "Bounded Rationality"

Source: Barriers to industrial energy efficiency - a literature review, United Nations Industrial Development Organization, Vienna 2011


Problem with Payback #1: Lack of Detail

Source: Commonwealth of Massachusetts Executive Office of Energy and Environmental Affairs, Department Of Energy Resources, Energy Management Services Guide V. 2.1: Providing Energy Savings Through Energy Performance Contracting

Problem with Payback #2: Psychology

Client hang-ups with achieving "2-Year Payback"

Irrespective of their financial conditions

Promulgated by energy efficiency providers

Source: The Problem with Payback, Robert C. Bishop Energy Solutions Ltd, New Zealand, C1997.

IRR = Internal Rate of Return

- Effectively the "interest rate" returned by the project
- = Discount rate that returns zero NPV
- IRR cannot be solved analytically
 - Only iteratively
 - Excel guesses (10%) then cycles through until result accurate within 0.00001%
 - Excel gives up after 20 attempts

Calculation of IRR without Excel

ull_voda AU_3G 5:08 PM	* 86% 💷
All Projects	+
Create, edit, copy or delete a lighting project	ð
#2 Upgrade first building Place holder	>
#3 Upgrade second building Place holder	>
#5 Upgrade third building Place holder	>
•	
All Projects Abou	t Us

🗤 voda AU 3G 5:08 PM 🛛 🛞 8	5% 💻
All Projects Upgrade first bui	Save
Enter project details	A
Project Id: 2	
Project name	
Upgrade first building	
Area of space (m ²)	
400	
Operating hours p.a.	
3000	
Av lifetime electricity cost (per kWh)	
\$0.2	
Air conditioning effect	
0.35	
Project lifetime (years)	
10	
Project notes	
Completed in May 2013 with all fields filled	d in
Existing light Ffttings	>
New light fittings	>
Subsidies for new light fittings	>
Results	>

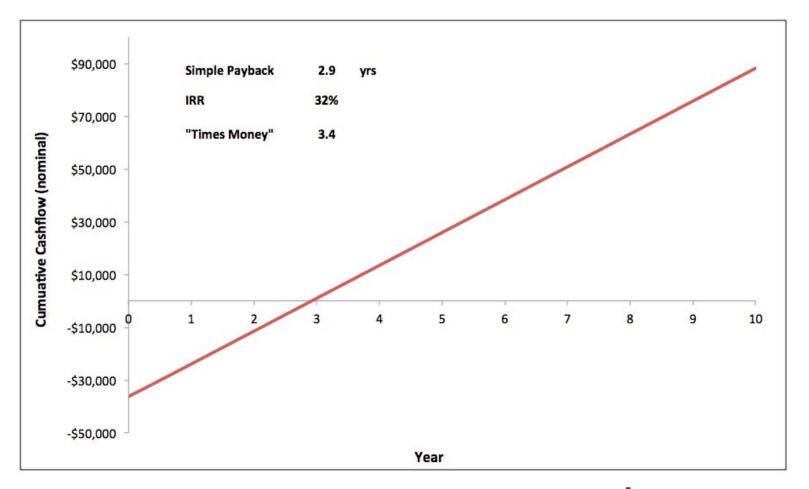
All Projects

About Us

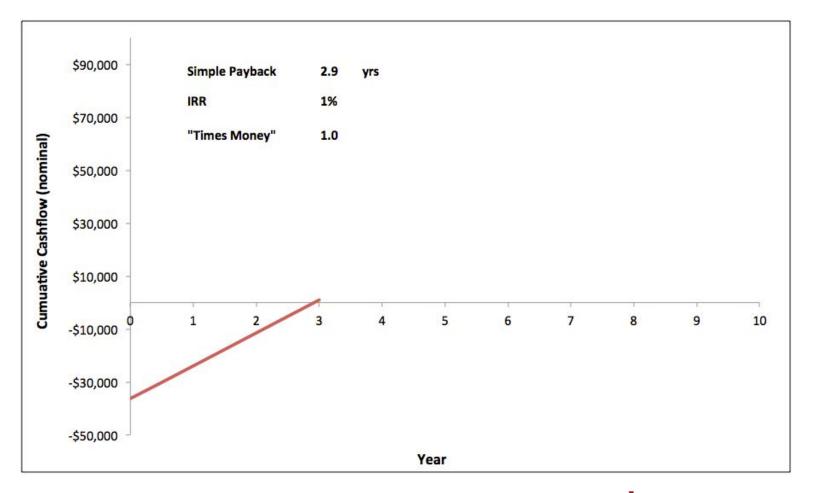
Calculation of IRR without Excel (regular cashflows) – Annuity Table

Project life (yrs):	10
Simple payback ratio:	3.30
IRR:	28.0%

	Years										
IRR	1	2	3	4	5	6	7	8	9	10	11
35.5%	0.7380	1.2827	1.6846	1.9813	2.2002	2.3618	2.4810	2.5690	2.6340	2.6819	2.7173
35.0%	0.7407	1.2894	1.6959	1.9969	2.2200	2.3852	2.5075	2.5982	2.6653	2.7150	2.7519
34.5%	0.7435	1.2963	1.7073	2.0128	2.2400	2.4089	2.5345	2.6279	2.6973	2.7489	2.7873
34.0%	0.7463	1.3032	1.7188	2.0290	2.2604	2.4331	2.5620	2.6582	2.7300	2.7836	2.8236
33.5%	0.7491	1.3102	1.7305	2.0453	2.2811	2.4578	2.5901	2.6892	2.7634	2.8191	2.8607
33.0%	0.7519	1.3172	1.7423	2.0618	2.3021	2.4828	2.6187	2.7208	2.7976	2.8553	2.8987
32.5%	0.7547	1.3243	1.7542	2.0786	2.3235	2.5083	2.6478	2.7530	2.8325	2.8924	2.9377
32.0%	0.7576	1.3315	1.7663	2.0957	2.3452	2.5342	2.6775	2.7860	2.8681	2.9304	2.9776
31.5%	0.7605	1.3388	1.7785	2.1129	2.3673	2.5607	2.7077	2.8196	2.9046	2.9693	3.0185
31.0%	0.7634	1.3461	1.7909	2.1305	2.3897	2.5875	2.7386	2.8539	2.9419	3.0091	3.0604
30.5%	0.7663	1.3535	1.8034	2.1482	2.4124	2.6149	2.7700	2.8889	2.9800	3.0498	3.1033
30.0%	0.7692	1.3609	1.8161	2.1662	2.4356	2.6427	2.8021	2.9247	3.0190	3.0915	3.1473
29.5%	0.7722	1.3685	1.8290	2.1845	2.4591	2.6711	2.8348	2.9613	3.0589	3.1343	3.1925
29.0%	0.7752	1.3761	1.8420	2.2031	2.4830	2.7000	2.8682	2.9986	3.0997	3.1781	3.2388
28.5%	0.7782	1.3838	1.8551	2.2219	2.5073	2.7294	2.9023	3.0368	3.1415	3.2229	3.2863
28.0%	0.7812	1.3916	1.8684	2.2410	2.5320	2.7594	2.9370	3.0758	3.1842	3.2689	3.3351
27.5%	0.7843	1.3995	1.8819	2.2603	2.5571	2.7899	2.9725	3.1157	3.2280	3.3161	3.3851
27.0%	0.7874	1.4074	1.8956	2.2800	2.5827	2.8210	3.0087	3.1564	3.2728	3.3644	3.4365
26.5%	0.7905	1.4154	1.9094	2.2999	2.6087	2.8527	3.0456	3.1981	3.3187	3.4140	3.4893
26.0%	0.7937	1.4235	1.9234	2.3202	2.6351	2.8850	3.0833	3.2407	3.3657	3.4648	3.5435
25.5%	0.7968	1.4317	1.9376	2.3407	2.6619	2.9179	3.1218	3.2843	3.4138	3.5170	3.5992

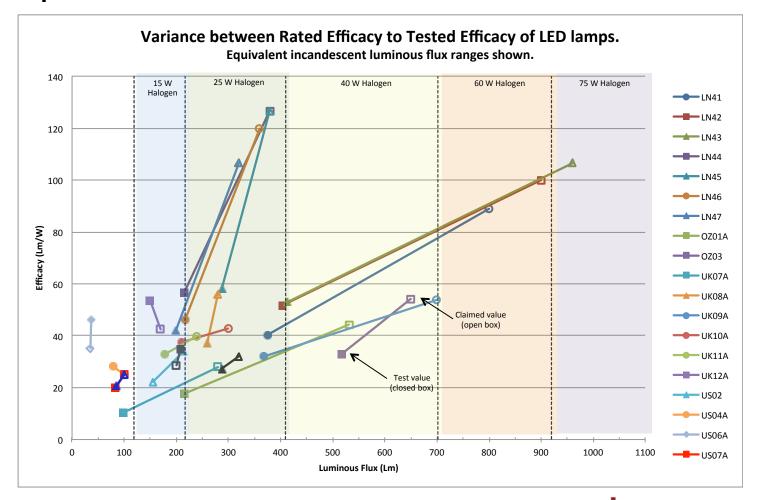


- Over the life of the project, how many times do you get your money back?
- Conveys more information regarding duration
- Simple yet effective



Payback Case Study 1 10 Year Project

Payback Case Study 2 3 Year Project



A Few Words About LED Lighting

Over-Claimed Performance

Caliper LED Tube Testing (2010)

Table 1b. CALiPER ROUND 11 SUMMARY -Troffers and High-Bay Luminaires

 SSL testing following IESNA LM-79-08 25°C ambient temperature 	DOE CALIPER TEST ID	Total Power (Watts)	Output (Initial Lumens)	Efficacy (Im/W)	CCT (K) [D _{uv}]	CRI	Photo			
SSL Replacement Lamp (4' linear): Bare Lamp and Testing in Parabolic Louvered Troffer										
Bare Lamp One lamp failed, no in situ*	09-107C	22	1539	70	3548 [-0.002]	73				
Bare Lamp	10-16	15	1368	93	5389	77				
In situ (2 lamps in troffer)		29	2173	74	[-0.004]					
Bare Lamp In situ (2 lamps in troffer)	10-17	19 39	1362 2194	70 57	3249 [0.007]	65	a a constantino de la			
Bare Lamp One lamp failed, no in situ*	10-18A	17 	1533 	91 	5602 [0.009]	75				
Bare Lamp In situ (2 lamps in troffer)	10-19	22 43	1887 3247	86 75	5091 [0.008]	69				
Bare Lamp In situ (2 lamps in troffer)	10-36	18 36	1628 2785	90 78	4300 [0.012]	70				
Fluorescent Benchmark (BK): Bare Lamp and Testing in High-Performance Lensed Troffers										
Bare Lamp (fluorescent)		32	3353	105	3387					
In situ (1 lamp troffer, Ballast Factor BF=1.18)	BK10-34	38	2708	71	[0.004]	82				
Bare Lamp (fluorescent)		32	3247	101						
In situ (2 lamp troffer, BF=1.18) In situ (2 lamp troffer, retest,	Round 9 BK09-67	69	4767	69	3248 [0.002]	83				
BF=0.88)		55	4045	74						

• • • Other Issues wrt LEDs

• LEDs hate heat

- Light output decreases with temperature
- LED light output decreases over time
 - Significant
 - Difficult to test
- Compatibility
 - Heat
 - Electromagnetic interference
 - Light distribution pattern
 - Luminaire Warrantee

Now becoming more mature
Beware claimed performance
Seek independent verification
Ensure adequate light on the work surface !

- Compare <u>maintained</u> light levels
 - Apples with apples
- Compare linear LED with T5
- LED downlights have come a long
 way
 Beletich Associates

Learning Objectives of this Session

• By the end of this session, you should:

- Have a basic understanding of the objectives of lighting design
- Have an understanding of the economics of lighting efficiency upgrades
- Understand what constitutes an effective business case
- Be engaged !!
- Be empowered !!

• IESANZ Best Practice Program

- <u>http://www.iesanz.org/resources/best-practices-in-lighting/</u>
- The Basics of Efficient Lighting
 - <u>http://www.energyrating.gov.au/</u> <u>resources/program-publications/?</u> <u>viewPublicationID=1486</u>
- Business cases
 - <u>http://eex.gov.au/energy-</u> <u>management/the-business-case-and-</u> <u>beyond/</u>

Questions and Discussion

