CENTRAL CITY URBAN FOREST
 PRECINCT PLAN

CITY OF MELBOURNE

CENTRAL CITY URBAN FOREST

PRECINCT PLAN 2013-2023

A MESSAGE FROM
 THE CITY OF MELBOURNE

The City of Melbourne's urban forest comprises around 70,000 trees in streets and parks as well as approximately 20,000 trees located in the private realm, in addition to a growing number of green roofs and walls across the municipality.
The trees managed by the City of Melbourne in the public realm contribute significantly to the character and identity of Melbourne. An increasing body of evidence and research informs us that urban forests and green space are vital to supporting a healthy community as well as providing a means to adapting to climate change.
The Urban Forest Strategy completed in 2012 identified the need to generate a new legacy for Melbourne and create a forest for future generations. This urban forest is to be diverse, robust and resilient in the face of current and future challenges. The in the face of current and future challenges. The
urban forest precinct plan documents are a key implementation tool of the Urban Forest Strategy, providing a framework for tree planting in streets that will meet the Urban Forest Strategy targets.
We have worked closely with the community and key stakeholders to generate this plan and are confident program that is consistent with neighbourhood character the community's vision for the future urb forest and the principles of the Urban Forest Strategy.

Introduction to the precinct plans 4
How does Melbourne's urban forest measure up? 8
What will the precinct plans achieve? 10
Community priorities 14
Central City's urban forest in 2013 and its projected future 18
Prioritising tree planting in streets 20
Map 1: Planting Priorities 22
Major streetscape redesign opportunities 23
Guiding principles and considerations for tree planting 24
Map 2: Key planting constraints 29
Map 3: Natural and open space context 31
Map 4: Strategic context 32
Map 5: Planting sub-precincts 34
Map 6: Canopy cover and biodiversity outcomes 37
Map 7: What should stay and what should change? 39
Planting Strategies 40
Map 8: Long-term Planting Strategy 41
Map 9: 10-Year Planting Plan 43
Species Palette 44

INTRODUCTION TO
 THE DRECINCT PLANS

Urban forest precinct plans guide tree planting and greening in City of Melbourne streets. Precinct plans are subsidiary documents to the City of Melbourne's 2012 Urban Forest Strategy and form a key component of the strategy's implementation. Melbourne is divided into 10 precincts.
Each precinct plan has been developed in collaboration with in the science underlying the Urban Forest Strategy and in sound urban design principles.

What is an urban forest?

The urban forest comprises all of the trees and other vegetation supports it - within the munici It incorporates vegetation in streets, parks gardens, plazas campuses, river and creek embankments, wetlands, railwa corridors, community gardens, green walls, balconies and roofs.

Why is the urban forest

 important?The City of Melbourne is currently acing three significant challenges: climate change, urban heating and population growth. These wil place significant pressure on the built fabric, services and people of the city.
A healthy urban forest will play a critical role in maintaining the health and liveability of Melbourne by:

- cooling the city
- improving and maintaining the health, well-being and happiness of urban dwellers
- improving social cohesion
- cleaning air and water
- sequestering and storing carbon
attracting people to live work and visit in Melbourne
stimulating economic activity in retail and dining precincts
providing habitat for native birds and pollinators

THE URBAN FOREST STRATEGY

Mitigate and adapt to climate change

- Reduce the urban
heat island effect
- Design for health and wellbeing

Create healthier ecosystems

Design for liveability and cultural integrity

Become a water
sensitive city

- Position Melbourne
as a leader in
urban forestry

PRINCIPLES:
 THE TARGETS SET OUT IN THE URBAN FOREST STRATEGY ARE TO:

ncrease canopy cover

The City of Melbourne's canopy cover will be 40% by 2040

ncrease urban forest diversity

The City of Melbourne's urban forest population will be composed of no more than 5% of one tree species, no more than 10% of one genus nd no more than 20% of any one family

mprove vegetation healt

90% of the City of Melbourne's tree population will be healthy by 2040

mprove soil moisture and water quality

Soil moisture levels will be maintained at levels to provide healthy growth of vegetation.

mprove urban ecology

Protect and enhance urban ecology and biodiversity to contribute to the delivery of healthy ecosystem services.

nform and consult the community

The community will have a broader understanding of the importance f our urban forest, increase their connection to it and engage with it process of evolution

INTRODUCTION TO THE

PRECINCT PLANS CONTINUED

Why are we concerned about climate change, urban heat island and population growth?

Climate change impacts to human health and wellbeing

 are a signiticant concern for our municipality. Climate change science to dicates that Melbourne is likely frexperience an increase in the weauency and severity of extreme weather events such as heatwaves, drought and flooding. Heat wav each year than in Australia disasters. The average annual temperature is expected to increase by approximately$6 \mathrm{C}^{\circ}$ and the number of hot days each year is expected to increase from nine to 20 by 2070

The urban heat island effect (whereby urban areas are several degrees hotter than surrounding rural areas) means that centra Melbourne will reach threshold emperatures for heat related illness ften and for a longer duration
than surrounding suburban and rural areas. The urban heat island is primarily a result of impervious hard surfaces that absorb heat, human activity that generates heat and low vegetation cover that fails to provide adequate shade and natural cooling. Anticipated population growth and increasing urban intensification means that more people will be at risk during extreme weather events

Thermal imaging of Melbourne, taken late at night howing how paved, unshaded surfaces store heat emperatures in urban areas.

Useful Life Expectancy mapped for City of Melbourne Trees
and, as a result, there will be a greater demand on health services in the City of Melbourne. Urban intensification also places addition pressure on public realm open space as the private realm becom increasingly built-up (for more information see Melbourne's Open Space Strategy). Access to open space is critical to people's physical and mental health and wellbeing.

What can the urban forest do?

Urban forests provide an array of environmental, economic and social benefits that contribute to creating resilient and sustainable cities that are enjoyable places for people to live and work. Some of the significant benefits that our limate chan impacts are shade coling and rainwater interception.

The urban forest and its associated benefits have been identified as one of the most cost-effective means of mitigating the potential impacts of climate change and heat on our city. The Urban Forest Strategy has established principles and targets for developing an urban forest that will meet Melbourne's needs and create a city within a forest.

HOW DOES MELBOURNE'S
 URBAN FOREST MEASURE UD?

In order to provide the benefits we need from our urban forest in a changing climate, our tree population needs to be healthy, population needs to be healthy,
diverse and resilient. To assess its current state we mapped the trees in our city to measure species/ genus/family diversity, useful life expectancy and tree canopy

Useful life expectancy

Useful life expectancy is an estimate of how long a tree is likely to remain in the landscape based on health, amenity, environmental services contribution and risk to the community. The recent period of drought and water restrictions triggered irreversible decline for many trees. This exaggerated the age-related decline of many significant elms and other trees Modelling shows that within the next ten years, 23% of our current tree population will be at the end o their useful lives and within twenty 39% Most dramatically 55% of Melbourne's elms are in a state severe decline and will likely need to be removed from the landscape within 10 years.

Tree diversity and vulnerability

At present, approximately 40% of our trees come from one family (Myrtaceae). Elm avenues line many Melbourne boulevards and plane trees dominate in many streets, particularly within the centra city. Within streets 24% of trees are planes, 11% are elms and 8% are spotted gums. Reliance on a few species, and a lack of spatial diversity in species distribution, leaves the urban forest vulnerable to threats from pests, disease, and stress due to climate change

Canopy cover

Increasing the provision of summer shade and biomass is important to combating the urban heat island effect, adapting to climate change and enhancing our streetscapes for the comfort of people. Canopy cover is a way of expressing, as a percentage, how much of any given area is shaded by trees. Currently parks are without natural shade and the areas of the city with the highest population density have the owest canopy cover. The City aims to double its canopy cover by 2040 and is currently planting 3,000 tree per year to achieve this target.

How can permeability, availability of water and soil volume be improved?

he urban environment is highly modified, with harsher conditions andscapes Tree health and the ability to maintain shade and cooling benefits are primarily influenced by the conditions in which trees are growing.

Access to ample soil moisture enables trees to actively transpire and cool the surrounding air. Adequate soll moisture is critica of health vegetation. A nunber re currently undertaken to eplenish soil moisture and ensure it is maintained at level o provide healthy growth. Our Total Watermark Strategy is being updated to strategically manage Melbourne's water catchment. In the meantime, we have implemented numerous water sensitive urban design projects to capture and store
water that would otherwise go down the drain. This water is being used to water the vegetation in our urban landscapes.

Urban development has increased the connectedness of impervious surfaces resulting in

- decreased vegetation cover and below ground growing space;
- decreased infiltration of water into the ground;
- increased pollutant runoff; and
- increased hard surfaces which contribute to the urban heat island
Fundamentally, the city has low levels of water permeability (50\%) and water has little opportunity to infiltrate the soil. Ground surfaces need to allow rainfall to enter the soil, a huge reservoir that is ready made to provide for a healthy forest. We are increasingly using methods to increase permeability through the use of permeable pavement, structural soil cells and peeling back asphalt where possible to provide better growing and a better cooling outcome.

MELBOURNE'S CANOPY GRAPHED WITH AND WITHOUT TREE PLANTING

[^0]
WHAT WILL THE DRECINCT pLANS ACHIEVE?

The precinct plans will help to guide implementation of the urban forest strategy in Melbourne's streets. The information provided in the plans will direct the annual tree planting program to achieve urban forest strategy objectives, prot character, and to prioritise works and budgets within each precinct.
Within this document, specific direction is provided on the selection of appropriate trees for the precinct.

The plans are performance based in that they establish the desired outcomes for streets but do not prescribe specific species for each location A set of high performance guidelines are being developed for Melbourne's urban landscapes and these will support he precinct plans with case studies and detailed guidance on how achieve outcomes in streets that are consistent with the urban forest strategy. Park and significant boulevard trees will be planted
using existing master plans and site specific plans.

Policy context

The relationships between the precinct plans and City of Melbourne policy documents are outlined in the unan orest strategy. We hin the Open Space Strategy and the City North Structure Plan stronal City North Structure Plan strongly of the precinct.

THE VISION FOR THE CENTRAL CITY'S URBAN FOREST

THE CENTRAL CITY'S URBAN FOREST WILL DROVIDE A SAFE AND INVITING HABITAT FOR PEOPLE. THE FOREST WILL BE BEAUTIFUL, cOLOURFUL AND DIVERSE, ACHIEVING WHIMSY IN PLAYFUL SPACES AND ELEGANCE ALONG GRAND CITY STREETS.

Complementary Strategies

The precinct plans address tree planting in Melbourne's streets but there are many ways in which the private and public realm can contribute to meeting urban forest objectives and creating a city resilient to climate change.
These include:

- water sensitive urban design
- tree planting in parks
- private realm tree planting that contributes to urban forest canopy, diversity and connectivity
- planting vegetation that enhances urban biodiversity
- maximising permeable surfaces and growing space for trees
- building green roofs and walls
- greening balconies
- implementing innovative green technologies.
The City of Melbourne is working with stakeholders in both the public and private realm to support these outcomes.
Opportunities exist to enhance canopy cover in the private realm. The projected canopy cover for the entire precinct has included a
potential doubling of private realm potential doubling of private realm
canopy cover to 8% by 2040. In canopy cover to 8% by 2040. In
order for this to occur, private and institutional land owners, and developers would need to actively create space for and plant trees.
The City of Melbourne will support private residents to plant trees by
providing materials that advise suitable trees to plant in small yards and by seeking creative ways to encourage private land planting.

The City of Melbourne will also continue to educate residents on how they can contribute to and be involved in the urban forest through our ongoing community engagement work.
n an adjacent to the central city precinct, RMIT, the College of Surgeons, the State Library and state government manage large support greater canopy cover The City of Melbourne will work with istitutional and large holding land managers across the city to support and encourage the adoption of urban forest strategy principles on those ands. Similarly, the City of Melbourne will work with neighbouring municipalities to support and encourage the adoption of urban orest strategy principles in other jurisdictions.

The setting and role of
 he CBD urban forest

The central city's streets are laid out in a uniform grid of wide (30m) main streets, subdivided by narrower (10 m) east-west 'little' streets and a number of laneways. Expansive parklands and the Yarra River corridor adjoin the central city but there is little parkland within it; streets are the main public open spaces that people in the CBD use and enjoy. The amenity of streets is therefore especially important, and trees are vital contributors to many city buildings, quite large street trees are required to have proportional visual impact that maintains a sense of human scale roughout the city.

Street conditions

Despite the uniformity of the grid as a whole, the 30 m streets vary, with tramways in some and medians or centre-of-road parking in others and relatively wide or narrow footpaths in different streets. Varied building heights and characters also make some streets sunnier or shadier, and more fess enclosed directly onto the footpaths and create continuous walls along the sides of the street.

Historical and existing

tree plantings

The first significant street tre plantings in central Melbourne occurred about 1875, when elms were planted in Collins Street near end of the city Plane trees were also planted in a number of streets in the following decades. However, many streets remained treeless throughout this period and beyond and attention was lavished instead on pockets of land such as Gordon Reserve, which was heavily planted. Other tree species were planted in the twentieth century: for example Ash trees were planted along much of Collins Street and next to St Pauls Cathedral in the 1940s, and Paperbarks were planted along Latrobe Street in the 1970s.

Despite these varied plantings in the past, the existing street tree population in the central city is now dominated by Plane trees (74%, being mostly Platanus x acerifolia with some other cultivars). Some of these have been here for decades, and mature Planes with their limbs arching over the roadway add greatly to the city's character and
amenity. In the 1980s and 90s Planes exclusively were planted, replacing poorly performing Ash trees, healthy but under-scaled Paperbarks and a scattering of Elms in various streets.
While Planes have been favoured because of their large scale and robustness in harsh city growing conditions, the result is a virtual monoculture into a more diverse urban forest while respecting the formal dignity of the city's regular street grid is an important challenge for the precinct plan.

Little streets, lanes and plazas

Planting opportunities in little streets, lanes and the city's handful of plaza spaces contribute to their amenity. Some add important touches of local character, like the ginkgo in Cohen Place (Chinatown) and the Jacarandas in Brown Alley. The fronds of the Phoenix reclinata palms hanging over the back wall of the Melbourne Club's garden add significantly to Little Collins Street. However, these plantings are limited number and require intensive sitespecific investigation in proportion and are therefore neening provided and are therefore not addressed in detail in this plan.

atrobe Street c1870. Like many other CBD treets it remained treeless for decades. [Mitchell Library]

The east end of Colins street, showing ems or planes planted in the 1870 s.

Gordon Reserve, showing the changing plantings in the 1880s and 1930s. Small reserves like

Swanston Street in 1987 and 1995. The widening of footpaths in in 1991 created an
opportunity to transform the street with new tree plantings.

COMMUNITY PRIORITIES

Central city's urban forest precinct plan has been developed in collaboration with the community, which is reflected in the character,
vision, planting plan and priorities defined for central city's urban forest. The central city is full of opportunities for greening to create safe and inviting habitats be multi-purpose, and tree planting or greening should be fit for purpose and creative. Achieving the vision for Melbourne's future urban forest is a shared responsibility and needs to be a collaborative effort between government, residents, developers, businesses and the community at large.
Consultation with the centra city community indicated a preference for trees that would over streets. Trees that would provide colour and seasonal interest were also preferred.

COLOUR

Desired future states defined by the community

Beautiful, safe, healthy, valuable, mbient, soft, elegant, whimsic playfu
Diverse, different, colourfu, seasonal, green - native evergreen, deciduous Healthy, robust, long-lived, low maintenance
Pedestrian amenity, inviting multi-purpose
Forest-like with greening everywhere

cENTRAL CITY'S URBAN FOREST IN 2013 AND ITS DROJECTED FUTURE

TREE HEALTH (ULE) - PUBLIC REALM

Tree counts for CBD, categorised by useful life time expectancy (ule) in years

Tree counts and planting by City of Melbourne in CBD
DIVERSITY (BY GENUS) - PUBLIC REALM

[^1]CANOPY - PUBLIC REALM

Tree canopy and locations for CBD

CANOPY - ENTIRE PRECINCT

Tree canopy and locations for CBD
PRECINCT POPULATION DISTRIBUTION - RESIDENTS

2013: Residents 25,282 Jobs 239,687
2031: Residents 42,398 Jobs 360,001

[^2]
PRIORITISING TREE

 pLANTING IN STREETS

Prioritising tree planting

 in streetsWhen prioritising where and when to plant, it is important to focus resources in the locations that need of where opportunities exist to plant new trees or replace trees, where the highest density of vulnerable people reside, which streets are the hottest in summer, and where

very low canopy cover exists today Community priority is also used as a criterion in other precincts but, given that all streets in the central city were highlighted as a priority in community consultation, it is not Census and maping data were used to spatially define streets with these conditions and are defined on the maps overleaf

he maps overleaf.

3. Hot and very hot streets

Map 1: Planting priorities

The priority for work in different streets has been determined using varied criteria and the associated timing is provisional only. The schedule for some streets may be brought forward or delayed by capital works, renewal projects or developments that affect tree planting or survival. For example, Street power station and The Age sites are likely to damage trees in the western-most block of Lonsdal Street although this otherwise Street, although this otherwise planting opportunity. Conversely, the potential to radically improve growing conditions by rebuilding centre islands/medians with better subsoil preparation gives replacement of the central plantings in Exhibition, Russell, Queen and Lonsdale St a high priority even though these are relatively well shaded at present. Unforseen opportunities for streetscape improvement may also alter scheduled planting.

Streets prioritised for work

 in Years 1-4 (2013-2016) include those:1. already scheduled for work in the current planting season; or
2. having a high number of vulnerable people with two or more occurrences of: very low canopy cover, temperature hot spot or replacements required

Streets prioritised for work

 in Years 5-7(2017-2019)
include those which

have a high number of vulnerable people with one occurrence of: very low canopy cover, temperature hot spot or replacements required

Streets scheduled for Years

 8-10 (2020-2023) includehose with only:
a high number of vulnerable
people; or a combination of
2. very low canopy cover
3. temperature hot spot; or
4. replacements required

HOW THE PRECINCT PLAN
GUIDES ANNUAL PLANTING
\square

Set annual planting program

Priorities (Map 1)
Streets undergoing unforsee change (Eg. Infrastructure Project or Development) Annual Budget

Define objectives for streetscape

Review guiding principles and
considerations for tree planting (Map 2-7)

Define planting strategy

Maps 8-10

Select species

Review Streetscape objectives
Review What should change (Map 7)
Review Planting plans (Map 8, 9 \& 10)
Review species pallette

Implement planting

Produce streetscape design options
Consult with residents
Plant

MAP 1: PLANTING PRIORITIES

MAJOR STREETSCADE REDESIGN ODPORTUNITIES

There are opportunities for significant redesign in some significant redesign in some
streets, which should be resolved before any replanting of trees is undertaken in these locations. They may include:
Elizabeth St and William St: universal access tram stops Lonsdale St: redesign post closure of power station and The Age
Dudley St-Franklin St: link across
QVM car park

Victoria St: traffic downgrade
following QVM link
Flinders St (Exhibition to Russell): widen footpath to incorporate plane trees now in carriageway
Exhibition St and Queen St: bike lanes and medians

Spring St at College of Surgeons: excess road space allows for greening and WSUD initiative

STREET REDESIGN OPPORTUNITIES

GUIDING PRINCIPLES AND considerations for tree planting

Planting in streets presents a variety of challenges, and there are important principles to use in responding to those challenges that will help to meet the Urban Forest Strategy targets. These principles are expanded on in the Urban Forest Diversity Guidelines, which you should refer to when designing or planting any streetscape; however central city specific principles are outlined below.

Planting types and locations: preference large canopy trees

Most streets in Melbourne's CBD are heavily used and the area for planting is limited by competing demands for access, parking and ther activities. To maximise canopy cover despite this constraint it is best to use large canopy trees that will spread across and shade wide carriageways without blocking access and visibility.

However, tree size may be limited by the position in a street. Large tree trunks simply won't fit in some narrow footpaths and retain adequate space for pedestrian adequate space for pedestrian
access; some of the tree pits for mature Plane trees in Collins Street, for example, are wider than entire footpaths in other streets. Large trees also have large root systems and create the risk of lifting pavements and creating trip hazards in footpaths.

Both overhead and underground factors commonly make planting in or near the centre of streets a lower-risk option than planting near the sides of a street. Underground services are a major consideration to services by tree roots, and there is perhaps an even greater risk of damage to tree roots when works occur on services - excavations for services occur frequently in the CBD - and services are typically less of
constraint towards the centre of streets than near the edges. Trees ocated near or between traffic shading road pavements than if they are located near the edge of the street reserve.

FOOTPATH WIDTHS

Planting patterns and species choice: Adopt planting patterns that increase diversity
The convention of planting consistent avenues with a single kind of tree limits species diversity. However, avenue plantings are important to local character in many Melbourne streets and parks, not least in the CBD.
To balance these conflicting pressures, it is necessary to identify ways to minimise the maintaining a strong design outcome. A variety of approaches may be appropriate to do this, e.g.:

- Establish a hierarchy of streets identifying those that are costinuous avenues and thos where avenue plantings are less important important.
- Avoid planting avenues where it they are unlikely to be successful in achieving interrupt avenues include underground or overhead services, roads traversing bridges, and overhanging trees from adjoining gardens.
- Identify logical points along the length of streets where species may change. This could adioin parks or important public adjoin parks or important public spaces.
- Use asymmetrical treatments in narrow streets and where overhead wires affect only one side.
- Use informal mixes of species, e.g. along perimeters of parks, in streets where most trees are senescent yet important established specimens remain,
and where vegetation from private gardens occasionally overhangs into the street.

Consistency of planting using a few species contributes importantly to the character of some precincts but works against species diversity objectives. It is therefore sometimes appropriate to maintain "over-representation" while minimising the use of thes species elsewhere London Plane trees are currently the dominant species in the CBD, and even if their use is substantially reduced it is likely that they will continue it is likely that they will continue
to be represent a much higher proportion of the tree population than the target maximum of 5% per species. This implies significant pressure to minimise the use of Planes in other precincts.

Soil and moisture conditions: Improve soil moisture conditions and select species appropriate to

the site conditions

Most trees grow best where the soil can be emended to improve fertility, moisture retention, drainage, growth. However, pavements limit access to improve soil. Where possible, it is desirable to improve soil conditions under paving
to support tree growth e.g.:

- Undertake continuous trenching and soil improvement in medians and centre of road parking zones
- Create structural soils below pavements that remain permeable despite compaction required to support the paving.
hese concerns are particularly important in areas with bluestone paving, as the bluestone (on a concrete slab)
s even less permeable than ordinary asphalt.
Passive irrigation using rainwater unoff should also be used
to support tree growth while minimising use of mains water.
Ways to achieve this include:
- Plant in or along low-lying locations and drainage zones where possible.
- Create permeable pavements in areas of low loading and risk, i.e. in footpaths, parking lanes,

Construct rainwater infiltration pits located on the uphill side of side-entry or grated stormwater pits.

- Use planting pits that capture rainwater. These are particularly helpful for tree establishment.
There have been very few records of problems with tree growth in the CBD due to poor soil drainage. of underground services trenches that are backfilled with sand or screenings.

Improving below ground growing conditions for trees in streets

Establish a hierarchy of streets identifying those that are most important to plant with continuous avenues and those where avenue plantings are less important.
\qquad

GUIDING PRINCIPLES AND CONSIDERATIONS FOR TREE PLANTING CONTINUED

In addition to the typologies of streets relating to trams, centre medians and footpath widths noted previously, the CBD affect tree planting. Despite the CBD affect tree planting. Despite of Plane trees, planting conditions across the city are not uniform. This, in part, explains the inconsistencies and variable success of existing trees.
These factors will continue to affect tree planting and growth into the future. While they create gaps and for uniformity of planting across the city street grid, they can be used positively to define new character for the urban forest, which aligns with other objectives.
Locations where planting is precluded by overhead and underground structures include rail loop stations, on bridges and below pedestrian overpasses. In locations with areas on structural decks above railways, on structural decks above railways,
conventional tree planting is not sustainable. Locations with 30 m wide main streets that do not carry tramways and feature central medians or centre-of-road parking interspersed with tree islands provide opportunities for large canopy trees.
The cross sections at right illustrate typical arrangements of footpaths, tramways and traffic lanes in the 30m wide main streets of Melbourne's city centre. Footpath widths vary significantly even in these wide of-road islands or medians opens up possibilities not present where there are tramways. Planting opportunities vary in relation to these typologies, and should influence the type of construction or excavation for planting as well as the selection of species.

30 m street with tramway +3.6 m footpaths (Flinders St, Latrobe St)

30 m street with tramway +5.4 m footpaths (Collins, Bourke, Elizabeth)

30 m street with tramway +8.5 m footpaths (Swanston st)

_
30 m street with centre parking +3.6 m footpaths (Exhibition, Queen, etc.)

MAP 2: KEY PLANTING CONSTRAINTS

LEGEND

- Existing tram line with tran stopLow voltage powerlines
___ High voltage powerline
Areas on structure which
limits planting
---- Central median planting opportunity
----- Existing ridge line
— Boundary for CBD precinct

GUIDING PRINCIPLES AND CONSIDERATIONS FOR TREE planting continued

These maps show some of the many layers of information that influence the opportunities and objectives for tree planting in central city streets.

Balancing diversity and formal

 structureOne issue that is particular to the CBD Precinct Plan, in comparison to implementation of the Urban Forest Strategy in other parts of Melbourne, is the challenge of defining a planting scheme that allows for far greater species at prest while maintainin design structure that gives the CBD a cohesive character and formal dignity appropriate to a place that is the state's premier office and retail centre, visitor destination, and seat of government.

Two major factors will shape this scheme: the typologies of streets (with or without trams, retail streets with wide footpaths, etc.) and the mposite effects of factors that ectively break the central city into sub-precincts. These precincts are defined only from the perspective of tree planting (not on the basis of factor such as those used to define Chinatown or the Greek Precinct). In particular they reflect the factors noted on preceding pages, i.e.

- Overhead and underground structures that preclude planting and growth of trees.
- Changes in topography.
- Changes in building height controls that affect light and wind conditions on the street.
The presence or absence of significant parkland and green open spaces other than streets.

MAP 5: PLANTING SUB-PRECINCTS

LEGEND

Parklands and civic open

spaces

Parks and other open spaces are associated with the changing street alignments to the south, east and north of the CBD. A consistent planting approach for these areas, which contrasts with typical street tree plantings, will help to emphasise the identity of the CBD as a distinctive place.

Retail core

he central city's retail heart is distinct because of its situation in a valley between hills to the east and west ends of the city, lower building heights, the extensive pedestrian列 expaths that limit tree plan and special treatment of the Bourk nd special treatment of the Bourke Street Mall.

Spencer Street railway decking

The link to Docklands over the Spencer Street railways is made structure where conventional tree lanting is not sustainable. Although Collins St and Latrobe St extend through the length of the central city and into Docklands, continuous uniform tree plantings along them are not possible.

GUIDING PRINCIPLES AND CONSIDERATIONS FOR TREE planting continued

Anticipated canopy cover at maturity is
represented as shading in streets on the map.
In some streets the maximum canopy cover is
limited due to constraints such as tram routes
Planting configuration should seek to maximise
canopy cover in all cases.

Minimum canopy
cover of 20%

MAP 6: CANOPY COVER AND BIODIVERSITY OUTCOMES

LEGEND
Minimum canopy cover of 40%
Minimum canopy cover of 20% - 40\%
Minimum canopy cover of 20%

GUIDING PRINCIPLES AND
CONSIDERATIONS FOR TREE

PLANTING CONTINUED

What should stay and
 what should change?

In general the following should change.

- Regular avenue plantings in locations suitable for incremental replacement as individual existing trees decline.
- Trees significantly damaged by construction projects, suitable for full removal and replacement.
- Trees requiring removal in existing centre tree islands with capacity for reconstruction (as continuous medians or separate islands) with radically improved subsoil conditions.
- Planes in relatively narrow and congested footpaths where scale is provided by centre median trees, to be replaced by smaller species.
- In little streets and laneways avoid using trees planted in the main streets.

In specific locations the following should remain the same.
(1) Healthy Spotted Gums in Franklin St median/centre islands merit retention (ad hoc replacement of individual trees may be required)
(2) Planes in Swanston St form a consistent and relatively healthy avenue and merit retention (ad trees may be required).
(3) Planes in key visitor/retail streets with wide footpaths, meriting retention with th same proven large-scale species (ad hoc replacement of individual trees may be required).
(4) Senescent elms in Collins St are in need of short term replanting.

MAP 7: WHAT SHOULD STAY AND WHAT SHOULD CHANGE?

LEGEND

pLanting STRatecies

MAP 8：LONG－TERM PLANTING STRATEGY

Long－term Planting Strategy

This plan provides direction for

 new and replacement planting across the CBD．The selection of tree species for each street should respond to criteria including optima size and other characteristics that relate to the street typologland sub－precincts．Values of existing vegetation are also a factor in species selection．Overarching principles affecting the planting plan include the following

In streets with tramways，the principle tree plantings will be in the footpaths．
In streets without tramways，
medians will accommodate the largest canopy trees in the CBD and help to create a visual structure that ties the sub－ precincts of the Hoddle grid together as well as linking the civic and parkland precincts around its edges．
Where large canopy trees in central medians are possible， smaller ornamental trees may be appropriate in the footpath if not precluded by verandas
or other features．
Where trees are in footpaths deciduous trees should be favoured while trees in medians may be evergreens．
A consistent visual structure should be created for the main street grid（ 30 m streets）with
consistent，regularly－spaced lines of trees along the length of each street．

Contrasting with this formal structure in the major grid，plantings in little streets，lanes and plazas should be highly varied both in species selection and planting arrangements，to add an element of surprise，whimsy and local colour as well as adding to species divers areas will often need to be irregular and opportunistic．
Tram streets：Principal plantings in footpaths．Use deciduous species Wide footpaths in key retail streets （Bourke，Collins，Elizabeth and Swanston）suit the largest reliable species：London Plane．Use other species in Flinders，Latrobe，Spence and William Streets．
Median streets：Principal plantings in median／tree islands．Canopy height and breadth to be prioritised above other selection criteria（except hardiness）to ensure shading of the roadway．Evergreens an option． Trees at the side of the road，if any， may be smaller ornamental species． Park－edge streets：On the park side， plant trees in the open space，not the footpath．In tram streets，plant trees in footpaths on the built side only．Plant medians as extensions of the adjoining park．Prioritise evergreens on the park side， eciduous on the built side． Retail core：Species to contrast with those in the extensions of each street beyond the core．

Little streets，lanes and plazas： Select species as planting opportunities are identified Aim to add to the diversity of species and vegetation type；species used in the main streets should not be used． Consider trees as small groups o individual specimens．Repetition of the same species should be limited in these smaller streets to encourage a sense of uniqueness when you step away from the larger streets These trees can include some of those species less suited to avenue planting and can be quite dramatic in their seasonal change

LEGEND
ーーー Plane trees
Medium deciduous species
－－－Large deciduous species
Large evergreen species
Other contrasting species

PLANTING STRATEGIES

CONTINUED

10-year Planting Plan

This plan provides direction on
where new and replacement
planting is to occur across the
central city over the next 10 years.
The size and evergreen/deciduous
nature of the species to be used is also defined as a solid or dashed line (in the case of replacements this may be different to what is planted in that location currently). Species
selection is left somewhat open: however Map 7 and Map 8 provid guidance on where spatial diversity should be created and where core species should be retained Streets with opportunities for re-design represent streets with a complexity of issues and where planting alone will not achieve a substantial improvement; these streets require a more comprehensive design process considering a range of functions. A species palette is provided at the end of this document.

MAP 9: 10-YEAR PLANTING PLAN

LEGEND

	Existing apenspace	REPLAC	MENT
INIII,	Street re-design opportunities		Large evergreen tree
			Large deciduous tree
			Medium - small deciduous tree
EXISTING		NEW	
	Large evergreen tree		Large evergreen tree
-----	Large deciduous tree	-	Large deciduous tree
--	Medium - small deciduous tree	-----	Medium - small deciduous tree

SPECIES PALETTE

The following species are provided for guidance and illustration only and do not preclude the use of other trees that suit the design criteria set out in the planting plan and other site-specific requirements that may be identified in the course Plantings
Platanus sp., plane

Dominant Species

Large Deciduous Trees for Tram Streets
Celtis australis European nettle tree Flindersia australis (trial), Crow's ash (semi-deciduous)
Platanus x acerifolia, London Plane (for Collins, Bourke, Swanston and Elizabeth Streets)
Quercus cerris, Turkey oak
Quercus coccinea, Scarlet oak Quercus frainetto, Hungarian oak Quercus pa/ustris, Pin oak
UImus procera, English elm
Zelkova serrata, Japanese zelkova
Large Evergreen Trees for Medians Agathis robusta, Queensland kauri Angophora costata, Smooth-barked apple
Corymbia maculata, Spotted gum Corymbia citriodora, Lemon scented gum
Ficus rubiginosa, Rusty fig
Flindersia australis (trial), Crow's ash (semi-deciduous)

Retail Core Feature Trees

Ficus macrophylla, Moreton Bay fig Phoenix canariensis, Canary Island date palm
of preparing detailed plans for specific locations. When available, arger stock should be planted in the central city so that tree canopies clear pedestrian height as soon as possible following planting.

Other Species

Medium Trees fo

 with MediansCory/us colurna (trial), Turkish hazel
Fraxinus americana, White ash Ginkgo biloba, Ginkgo
Pyrus sp., Flowering pear
Tilia cordata, Small-leaved lime
Ulmus parvifolia, Chinese elm
Medium Trees for Footpaths in Small Streets and Laneways
Small streets and laneways provide opportunities for creative planting and are not limited to this list:
Allocasuarina cunninghamiana, River she-oak
Calodendron capense, Cape chestnut Livistonia australis, Cabbage tree palm Populus simonnii, Chinese poplar Stenocarous sinuatus, Firewheel tree Waterhousea floribunda, Weeping lillypilly
Washingtonia robusta, Mexican fan palm

Large trees for "park" edges and
reserves

Agathis robusta, Queensland kauri Araucaria heterophylla, Norfolk Island
pine pine
Araucaria cunninghammi, Hoop pin Cedrus deodara, Deodar cedar Corymbia citriodora, Lemon scented
gum gum
Ficus macrophylla, Moreton Bay fig
Jacaranda mimosifolia, Jacaranda
Phoenix canariensis, Canary Island palm
Pinus canariensis, Canary Island pine
Quercus canariensis, Algerian oak
Quercus ilex, Holm oak
Washingtonia robusta, Mexican fan palm

FREQUENTLY
ASKED QUESTIONS

Where can I find out more information about Melbourne's urban forest?

A wide range of information about Melbourne's urban forest can be explored at

melbourne.vic.gov.au/urbanforest

What can I do to contribute to Melbourne's urban forest?

If you have a garden or room for a tree, you can contribute by plantin manage a building, development, or institution you can contribute by planting in the grounds or by greening walls, roofs or balconies.
You can also contribute by staying informed about the urban fores and by talking to others about the benefits of having trees in our urban areas. The City of Melbourne will continue to provide opportunities for the community to volunteer their time and idea to help achieve urban forest objectives. If you would like to be added to our mailing list, or have an urban forest idea you'd like to share, please email your details to urbanforest@melbourne.vic.gov.au

have seen a sick or damaged tree, or an empty tree lot. How can I tell City of Melbourne about it?

Please email the location and description of the issue to treeplanning@melbourne.vic.gov.au.

Can I plant a tree in

public space?

Trees can only be planted on public land with council authorisation or through a sanctioned public olanting activity. However, if there is a location where you would like one a tree planted then you can reeplanning@melbourne.vic.gov.au

Can I make a garden in

 public space?Please refer to the City of Melbourne's Street Garden Guidelines, which you can

How to contact us

Online：melbourne．vic．gov．au

In person：

Melbourne Town Hall－Administration Building
120 Swanston Street，Melbourne
7.30 am to 5 pm，Monday to Friday
（Public holidays excluded）
Telephone： 0396589658
7.30 am to 6pm，Monday to Friday
（Public holidays excluded）

In writing：

City of Melbourne
GPO Box 1603
Melbourne VIC 3001
Australia
Fax： 0396544854
Translation services：
0392800716 ћण्9СТ
0392800717 廣東話
0392800718 E入入nvıка́
0392800719 Bahasa Indonesia
0392800720 Italiano
0392800721 國語
0392800722 Soomaali
0392800723 Español
0392800724 Türkçe
0392800725 Việt Ngữ
0392800726 All other languages

National Relay Service：If you are deaf，hearing impaired or
speech－impaired，call us via the National Relay Service：Teletypewriter （TTY）users phone 1300555727 then ask for 0396589658
9 am to 5 pm，Monday to Friday
（Public holidays excluded）

[^0]: The tower line represents what is projected to happen to our canopy cover if we stop planting trees. The line above shows what

[^1]: Main genus types for CBD

[^2]: Projected resident population by age for CBD

